Calcineurin does not mediate exercise-induced increase in muscle GLUT4.
نویسندگان
چکیده
Exercise induces a rapid increase in expression of the GLUT4 isoform of the glucose transporter in skeletal muscle. One of the signals responsible for this adaptation appears to be an increase in cytosolic Ca(2+). Myocyte enhancer factor 2A (MEF2A) is a transcription factor that is involved in the regulation of GLUT4 expression. It has been reported that the Ca(2+)-regulated phosphatase calcineurin mediates the activation of MEF2 by exercise. It has also been shown that the expression of activated calcineurin in mouse skeletal muscle results in an increase in GLUT4. These findings suggest that increases in cytosolic Ca(2+) induce increased GLUT4 expression by activating calcineurin. However, we have obtained evidence that this response is mediated by a Ca(2+)-calmodulin-dependent protein kinase. The purpose of this study was to test the hypothesis that calcineurin is involved in mediating exercise-induced increases in GLUT4. Rats were exercised on 5 successive days using a swimming protocol. One group of swimmers was given 20 mg/kg body weight of cyclosporin, a calcineurin inhibitor, 2 h before exercise. A second group was given vehicle. GLUT4 protein was increased approximately 80%, GLUT4 mRNA was increased approximately 2.5-fold, MEF2A protein was increased twofold, and hexokinase II protein was increased approximately 2.5-fold 18 h after the last exercise bout. The cyclosporin treatment completely inhibited calcineurin activity but did not affect the adaptive increases in GLUT4, MEF2A, or hexokinase expression. We conclude that calcineurin activation does not mediate the adaptive increase in GLUT4 expression induced in skeletal muscle by exercise.
منابع مشابه
Investigation of the RBP4 and GLUT4 gene expression in skeletal muscle of STZ induced diabetic rats following aerobic exercise training
Background: Type2 diabetes is a metabolic disease that is rapidly increasing in the world. GLUT4 and RBP4 are factors that play a role in glucose uptake. This study aimed to investigate the effect of moderate-intensity continuous training on RBP4 and GLUT4 gene expression of soleus muscle in STZ induced diabetic rats. Methods: This experimental study was conducted between May and September 201...
متن کاملRole of calcineurin in exercise-induced mitochondrial biogenesis.
Raising cytosolic Ca2+ induces an increase in mitochondrial biogenesis in myotubes. This phenomenon mimics the adaptive responses of skeletal muscle to exercise. It has been hypothesized that increases in cytosolic Ca2+ during motor nerve activity stimulate mitochondrial biogenesis by activating calcineurin. Overexpression of constitutively active calcineurin increases expression of peroxisome ...
متن کاملتاثیر یک دوره تمرین مقاومتی بر بیان اینترلوکین-6 و RCAN-1 در عضله اسکلتی موشهای صحرایی دیابتی شده با استروپتوزوسین
Background: Myokines released from skeletal muscle have multiple metabolic and hypertrophic effects. On the other hand, one of proposed pathways for effects of exercise training on metabolic diseases is calcineurin signaling pathway. With considering to relation between interleukin-6 (IL-6) and calcineurin, the purpose of this study was to investigate whether the resistance training has an effe...
متن کاملCaMK activation during exercise is required for histone hyperacetylation and MEF2A binding at the MEF2 site on the Glut4 gene.
The role of CaMK II in regulating GLUT4 expression in response to intermittent exercise was investigated. Wistar rats completed 5 x 17-min bouts of swimming after receiving 5 mg/kg KN93 (a CaMK II inhibitor), KN92 (an analog of KN93 that does not inhibit CaMK II), or an equivalent volume of vehicle. Triceps muscles that were harvested at 0, 6, or 18 h postexercise were assayed for 1) CaMK II ph...
متن کاملPrevention of glycogen supercompensation prolongs the increase in muscle GLUT4 after exercise.
Exercise induces an increase in GLUT4 in skeletal muscle with a proportional increase in glucose transport capacity. This adaptation results in enhanced glycogen accumulation, i.e., "supercompensation," in response to carbohydrate feeding after glycogen-depleting exercise. The increase in GLUT4 reverses within 40 h after exercise in carbohydrate-fed rats. The purpose of this study was to determ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Diabetes
دوره 54 3 شماره
صفحات -
تاریخ انتشار 2005